Superconvergence Analysis and Error Expansion for the Wilson Nonconforming Nite Element
نویسندگان
چکیده
In this paper the Wilson nonconforming nite element is considered for solving a class of two-dimensional second-order elliptic boundary value problems. Superconvergence estimates and error expansions are obtained for both uniform and non-uniform rectangular meshes. A new lower bound of the error shows that the usual error estimates are optimal. Finally a discussion on the error behaviour in negative norms shows that there is generally no improvement in the order by going to weaker norms.
منابع مشابه
A New Superconvergence Property of Wilson Nonconforming Finite Element
In this paper the Wilson nonconforming nite element method is considered to solve the general two-dimensional second-order elliptic boundary value problems. A new superconvergence property at the vertices and the midpoints of four edges of rectangular meshes is obtained. The Wilson nonconforming nite element has been widely used in computational mechanics and structural engineering because of i...
متن کاملSuperconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell's Equations
In this paper, a nonconforming mixed finite element approximating to the three-dimensional time-harmonic Maxwell’s equations is presented. On a uniform rectangular prism mesh, superclose property is achieved for electric field E and magnetic field H with the boundary condition E × n = 0 by means of the asymptotic expansion. Applying postprocessing operators, a superconvergence result is stated ...
متن کاملNonconforming Wilson Element for a Class of Nonlinear Parabolic Problems
This paper deals with the convergence properties of the nonconforming quadrilateral Wilson element for a class of nonlinear parabolic problems in two space dimensions. Optimal H and L2 error estimates for the continuous time Galerkin approximations are derived. It is also shown for rectangular meshes that the gradient of the Wilson element solution possesses superconvergence, and that the Lx er...
متن کاملConvergence of the Nonconforming Wilson Element for a Class of Nonlinear Parabolic Problems
This paper deals with the convergence properties of the nonconforming quadrilateral Wilson element for a class of nonlinear parabolic problems in two space dimensions. Optimal H and L2 error estimates for the continuous time Galerkin approximations are derived. It is also shown for rectangular meshes that the gradient of the Wilson element solution possesses superconvergence, and that the Lx er...
متن کاملAdaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems Technische Universit at M Unchen Cataloging Data : Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems
We consider mixed nite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangula-tions. By a well known postprocessing technique the discrete problem is equivalent to a modiied nonconforming discretization which is solved by preconditioned cg-iterations using a multilevel B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994